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FOREWORD

Unimportant limitationuponthe development of aircrajt structures ofminimum weigh tand
maxt”murnefim”encyie the fact that the results of the ba~”cmathematical theory of elasticity hare in
general not been so Pregented that they can be .uxed by the arerage American engineer. Further,
the matliematical solutions of many imporhznt epecific problems are not known and our iinow?edge
of the phyeicul con.zdantsof the materials uaeclis incomplete. As a contribution toward the improve-
ment of Me m“tudion, the Bureuu of Aeronau&m of the Navy Department has jrorn time to time
jhanced work along these lines for presentation primarily from the viewpoint of the engineer. This
report, submitted to the Natianul AdLtiov Committee for Aeronautics for publidion, corers an
investigation of the torsion protlem by the Forest Products Laboratory, Forest %-m”ce,Department
of Agriculture, undertaken through arrangements between the Navy, Department and the Depafiment
of Agriculture. The discuwion and the$ndings, wlri7eclieckedlargely by tests of wooden specimens,
apply equally to wood and to metal, due co~”deratwn being p“ren to the elastic properties of the
materials used.

The data and the formulas presented apply strictly to the torsion phenomenon. A beam -may
fail eitfier in a normal type of bending or by Weral buckling resulting from normal loadi~, or by
tm”sting or wrinkling of an outstanding $ange under stresses hating their origin in the normal
loading. Likewise, a member such as a cery thin tu~e subjected to torsion may fail at a load less
than the theoretical load calculated by the torsion formulus because of other phenomena, such as
w“nkling, which hare their origin in the twisting load. It is necessary either to derelop criteria for
freedom from such secondaryfailures or to apply coejicients to the culalded strength value8to take care
of secondaryfadure. Technical Note No. 189 of the Natimud Advisow Committeefor Aeronautics!
which givesformulas for the ran”ationof allowableshearing stress m“thchang6in the ratio of diameter
to thickness, indicates one method of approach to this problem. T7ieArmy and iVa~ Standards for
sizes of tu..bin.gpermit a range in the ratw of diameter to thiclcne8sfor seamless tubing of about 5
to .(J3,and tubes of Ligher ratio can of course befabicated.

It should be noted that the polar moment of ined”a and the polar moment of inertia dirided
by the didance to the extremejiber hare no signi$cance in comparing the ~dity and the strength
of sections of di$erent form; in this respect they are not analogous to tfie use of the moment of inertia
and the section modulus in compam”ngthe fiending of beams. It so happens that the rigorous stress.

formulas for circular rods and tubes aa giren in the report reduce to tfie commonform q=;, which is ,

EC
analogous to the stress formula S = ~for beams. The beam formula, fiolcerer, is general, while

the common toreion formula is true only for circular rode and tubes. For memters of other shapes
an additional factor must be introduced into the formula u’hen reduction is made to the common
form.

The results oj the actual torsion tests of simple section8 in Table III show large radiations
in obsercedphysical properties, which my cause dou6t as to the soundness of design ocduesdeduced
from the results. Actually part of the material reported on, while acceptablefor making tests, is
outside the 8p13Y@d acceptable range for aircrafi stock—the test material represented the entire
tree. Later recommendatio~ for design ralues are ba8ed on the specification range and are con-
sermtice for rea.sonubletwiations outm.dethat range. For metals these rariatione (in the ratio of
“G” to “ E“ dues) are much less in amount. .

Recommended design stressesasjurnished by the Bureau of Aeronautic areg+henin Appendix C.

-- J.H. TOWERS,

Acting Chief of Bureau.
. 673
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REPORT No. 334

THE TORSION OF MEMBERS HAVING SECTIONS COMMON IN
AIRCRAI?J? CONSTRUCTION 1

By GEORGE W. TEAYEE and H. W. MAECH 2 .-

INTRODUCTION AND PURPOSE

Eltructud members designed for pure torsion are usualJy made wifh circular, elliptical,
rectangular, or other regular cross sections that have already yielded to direct mathematical
treatment as regards torsion. However, members designed primarily for thrust or bending
and consequently as a usual thing of irregular section are subjected to torsion also, and under
certain conditions they may fail by buckling and twisting through lack of sufficient torsional
rigidity. In order to design against the possibility of such failure in thin deep beams or in
compression members with thin, outstanding parts, we must be able to caIcuIate their torsional
rigidity. Such sections as I, T, L, and U have not been brought within the range of mathe-
matical analysis and up to a few years ago the engineer had practically nothing on which to
base an estimate of the torsional strength and rigidity of rods of irregular section. This publi-
cation presents the results of inveetigationa of the torsion of structural members undertaken
by the Forest Products Laboratory and fimmced by the Bureau of Aeronautics, Na~ Depart-
ment, under the national defense act.

With recent years a great variety of approtiate torsion form.das and drafting-room
processes have been advocated. In some of these, especially where mathematical considera-
tions are involved, the results are extremely complex and are not generalIy intelligible to engi-
neers. The principal object of the investigation was to determine by experiment and theoretical
investigation how accurate the more common of th~se formulas are and on what assumptions
they are founded, and, if none of the proposed methods proved to be reasonably accurate in
practice, to produce sirnple, practical formulas from reasonably correct assumptions, backed
by experiment. A second object was to collect in readily accessible form the most useful of
known results for the more common sections.

This report reviews informally the fundamental theory of torsion and shows how the more
common formulas are developed from it. FormuIas for all the important solid sections that
have yielded to mathematical treatment are listed. Then follows a discussion of the tomion
of tubuIar rods with formulas both rigorous and appro.simate.

It is shown by a seriesof tests of prisms of simple sect-ionthat wood is a suitable material for
the experimental investigation of the torsion problem. Accordingly, wood was used for the
experiments on full-sized members because of the ease with which it can be worked into dif-
ferent shapes and because of its low torsional stMness. The possible effect of Merent rnoduli of
rigidity in radial and tangential plan= was investigated mathematically, and the effects of
rate of Ioa&ing and of moisture content “were determined experimentally. Furthermore, soap
films were used in order to take advantage of a mathematical sindtity that exists between the
torsion problem and the problem of ihl.ing the deflection of a thin membrane under pressure.
The analogy is discussed in detail in the report.
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Our experimental work with beams of irregular sections that have not yielded to mathe-
matical treatment is described. From these experiments and ce.rtain mathematical considera-
tions, empirical formulas are set up for irregular sections whose component parts are rectangles.

TEST MATERIAL AND PROCEDURE

DIRECT TOESION TESTS OF BEAMS
—.

The first series of direct torsion tests was confined to rods of simple section, such as the
circle, the square, the ellipse, and the equilateral triangle. The test specimens were made. of
carefully selected Sitka spruce and when several were to be compared directly they were cut—
from the same plank. The elastic prcpertka of the material in any plank were obtained by
testing small minor s.pecimemscut from the plank and so located as to be representative. These
specimens usualIy consisted of two bending, two conqnwssioriparallel h-the grain, two specific
gravity, eight shear, and. three torsion specimens. The three minor torsion specimens con-
sisted of one piece approximately I)i inches square, one piece 1 by 3 inches quarter-sawn, and
one piece 1 by 3 inches ffat-savm. Four of the shear specimens were tested radialIy and four
tangentiaKy. AH mfijor torsion specimens for this first series of tests were 45 inches long and
the area of cross section was usually less than 2 square inches.

The second series of tests was made on beams of irregular section, such as I, T, L, and U.
These beams were 96 inches long, were cut from clear Sitka spruce planks, and were matched
as described for the first series.

The apparatus for the first two series of tests, which was.constructed expredy for these
tests, consisted essentially of an attachment for holding one. end of the beam fixed against
rotation and a disk for applying torque ab the other end, (13g. 1.) Rollers at the fixed end
provided for longitudinrd movement. The disk, which was IO inches in radius, turned on
ball bearings. It”~:as rotated by a metal strap attached to and passing around its periphery
and thence up to a yoke attached to the weighing platform of a scale, which was accurate to
one one-hundredth of a pound. The entire scale was bolted to the movable head of a testing
machine and load was applied by raising the head. The usual length over which distortion was
read, caJled the “gage length” @ this report, was 24 inches for the short specimens and 36
inches for the long specimens. At one end of the gage length a circular metal frame with a
20-inch radius was clamped to the specimen. On the periphery of this circular frame was
attached a steel tape graduated to tenths of an inch. At the other end of the gage length a
rectangular frame was abo clamped to the specimen, and welded to this frame was a pointer
that extended to the scale on the circular frame. As the beam vas twisted the scale rotated
more than the pointer. Determining the excess movement of the scale by reading the position
of the pointer on it thus yielded the angle of twist over a given gage length directly, the total
angle in radians being the scale reading ditided b.v the radius, 20 inches. The angle of twist
per unit length, in radians, is Lhenthis quotient divided by the gage length. Except for tests
made specifically to determine the effect of rate .of loading; the rate was varied with the
type of specimen, in. order to obtain approximately the same rate of strain in all tests. Such
variation necessitated raising the movable head of the testing machine at rates of from 0.674
inch per minute to 1.40 inchesper minute. For tes’ts made to determine the effect of rate
of loading, the speed of the movable head was varied from 0.023 inch per minute to 2.25 inches
per minute.

SOAP-FILM TESTS

The value of soap filmE in determining the torsional rigidity of a twisted rod and the
stresses in it-depends upon an analogy between the torsion problem and that of finding the
deflection of a thin membrane under the action of a uniform load. The mathematical simil-
arity is disoussed later in this report, where it-is shown that if a soap film is stretched over a
hole in a flatrplate, the hole being the same shape as the cross section of the bar and the film
being displaced from the plane of the plat~ by a slight-difference in pressure on the two sides,
the following relations hold:

.—
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1. The shear stress at.any point of the cross section is proportional to the s~opeof the Nm
at the cmresponding point with respect to the pIane of its boundary.

2. The contour lines of the tim represent the direction of the resultant shear stress at every
point.

3. The torsional rigidity of the section is proportional to the volume between the soap
fiIm and the plane of the pIate.

In order to make use of the analogy it was necessary to design apparatus with which the
slope of the iihn, its contour lines, and the vohme of displacement could be determined. The

.—.

..—
FIGUBEL-AppwatLu for applyfng torque to s&ructural sha~en and meaamfng the angJe of tti

.——

apparatus was patt~med after that used by Grii3ith and Taylor and deecribed by them in
Advisory Committee for Aeronauti~ (British) Reporti and Memoranda No. 333, Junej 1917.
As poirited out, the stmeses in the bar are proportional to the inclination of the fl.lm and the
stifbess of the bar is proportional to the volume generated by the film displacement. The rela-
tions hoId for any number of films provided the difference in pressure on the sides of a ti is
the same for all. This cmnd.ition is reatiy attainable by mal&g more than one hole in the
same test pIate; it is evident that the easiest way of obtaining actual stress or rigidity values
is to have a circuIar hoIe in each plate in addition to the hole that represents the section being

—
..-—
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studied. The rigidity of a circular shaft and its str9ws a~e easily calculated, and having the
two flms in the same plate makes it possible to compare torsional rigidities directly by com-
paring volumes and to compare stresses directly by c&apafig slopes.

In assembling the apparatus, a plate with the experimental hole and a circular hole cut
in it (fig. 2) was clamped between the bottom and the.sides of a cast-iron box (fig. 3). The box
bottom, which was 11% inches square outside and 2 inches thick, was supported on ?+veling - ““” ““

,
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FIGURE2.-The soapfllm apperetm with the upper pmt of the L@xremoved to show the Pr-
fore.ted plate

screws. It was recessed Minch inside of the Yrinch bearing surface on which the plate rested.
A square frame X inch thick and 2 inches deep formed the sides of the box; both bottom and
frame were provided with lugs for clamping screws. --Over the frame was placed a piece of plate
glass through the center of which a hole had been cut for a micrometer height gage, reading to one ~
one-thousandth of an inch, that carried at its Iowa-end a hardened steel needIe point. Fixed —
axially above the needle point,, extending upward from the frame supporting the gage, was a
steel recordng point. The position of the gage, at each reading, was recorded by pressing -‘ -
against it a sheet of paper attached to a board thatjqould be swung down to the horizontal for
this purpose; the board was hinged tc- the heavy ciiiiihon b“ise on which the bubble box was .
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Ieveled. Provision was made for increasing the air pressure beIow the soap films or decreasing
it above them.

With this apparatus contour lines and hence displacement volumes could be determined.
Stress couId also be determined, since it is inversely proportional to the distance between con-
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FmGP.x 3.-Tha complete &ssemhIgof the mapRlrn apparatus

secutive conkmrs. A collimator for measuring sIope directIy was made but time and funds
allotted to the study were ekhauated before it &M p~t in use.- - .—

The test plates were cut from sheet aluminum approximately 0.05 inch thick. The edges -. ..”

around the test holes were beveIed; the sharp edge was pIaced upward in the apparatus and
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great care was taken to keep the plates perfectly flat, When divergences from a plane were
found they were corrected by propping up the plate from below or by pu~ting small weights
on top of it.

With symmetrical sections a complete boundary sometimes was not used. .GrifEth and
Taylor found that the shape of a symmetrical fihr..was unaltered if the b was divided by
a vertical septum passing through its axis of syinmetry. In our work a septum was carried
down about one-eighth inoh below the underside of the plate. Figure 2 shows a septum in place.

Best results were obtained with a circular hole about 3 ..jnches in diameter and with. the
dimensions of the.-experimental hole such that the ratios of the heights of the bubbles over the
two holes were between 2 and 1.

In carrying out the experimental work, a film was drawn across the holes with a strip of
celluloid wet tith, soap solution. The blowing up was done through a burette, the bottom of
which was connected to the lower end of a cohmm of water, t&o.ugh a stopco~k, and the top to
the chamber below the test plate. As water was passed into the bottom of the burettej air was
forced out of the top into the apparatus. T& method was employed instead of blowing up the
bubblw..with air from the hmgs,because the carbon dicucideintroduced by that method was harm-
ful to the bubbles. .

The success of the method depends largely on ob~~&g a s~apfilm that will permit tie tal&g
of a great number of readings~. Some difficulty wag,at first encountered in obta%g a.sui!able
soap solution. Ml formulas investigated produced @ms that would lM but a few tiu@ untfl.. ,
a solution wsedby Dewar was tried. With this solutigmwe were able to obtain films that would
often last throughout a whole working day. It, was made by adding a very small quantity of
triethylamine oleak? to a 50 per cent solution of glycerine in distilled water. The triethylamine
oleate wa~ prepared as follows, using 2 grams of triethylamine to 5 grams of oleic acid:

The amine was dissolved in warm water and the oleic acid was slowly stirred in. Excess
amine in the emulsion was expelled by distillation and the water was expelled by subsequent
evaporation on a skim bath. In the preparation an excess of oleic acid should be ayoicled, since
it is not volatile.

Other oleates, such as ammonium, sodium, and potassium, were found by Dewar to be
very successful, but the triethylamine solutions are Jy far the most resistant to atmospheric
impurities.

DISCUSSION

THE TORSION PROBLEM

If a right cylinder or prism is twisted and held&@equilibrium by means of couples applied
at its ends, the portion of the cylinder or prism between any cross section and ,one end is in
equilibrium under two equivalent couples, one in the plane of the cross section and the o.ber the
appIied couple at the end. The couple in the planqof the cross section will be regarded as-the
resultant of a suitable distribution of shearing streqsj which conshts of tangential trac~iona in
the plane of the section combined with equal ttmgential tractions along appropriate longitudinal
sections. Since the cylinder or prism is in equilibrium under the action of the couples that are
applied at its ends, the cylindrical surface must be.free from traction.

corresponding to the shearing stresses just referred to, there will be shear~ s~ains of ,
two types, one consisting of the sliding of the element+of lone.cross Section over those Of ap ad-
joining section, the other of the relative sliding of di&erent longitudinal elements in the direction
of the length of the cyIinder. The .iirst type of strain will be expressed in terms of the angle
through which the plane of the section has been ro.tat~d, the angle being assumed proportional
to the distance from one end. The_sec-mdtype of strgjn, which implks that, ~ gener~, the pl!ge.

cross sections are distorted iato curved surfaces, will be expressed in terms of the displacement
of the elements of a section in the direction of the l~~gth of the cylinder. This displacement is
taken to be the same for all sections of a given cylinder or prism,

.—
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If the axis of Z be taken in the direction of the length of the prism and the components of the
displacement of a point parallel to the X, Y, and Z axes be denoted by u, o, and w, respectively.
the state of strain just described is a consequence of the foIlowing displacement:

U=–ryz, v= Tzx, w= 7$5(X,y) (1)

where ~ is the angle of twist per unit length and # is a function of z and y only, which is to be
determined.

The u and v components of the displacement together express a rotation about the Z axis
through an angle zr of a section at a distance z from one end, while the w component expresses
the distortion of each given section from its plane.

From the components of the displacement, the components of strain follow and from these
follow the components of stress. (References 1 and 2.) It is found that the X and Y component,
Xz and Y,, respectively, of the shearing stress at a point (z, y) in any cross section, are expressed
by the equations:

()XZ=GT ~–yI ‘z=G&+x) (2)

where G is the modulus of rigidity.
Associated with the stress components X= and Yz, which act in the plane of the cross sec-

tion, are the stress components Z, and Z,, which are equal to X. and YZ,respectively, and which
act in Iongitudimd planes parallel to the 2X and YZ planes, respectively. AU other stress com-
ponents are zero as a consequence of the assumed displacements (1). Thus the displacements
taken in (1) lead to a system of stresses of the type described in the &t paragraph of this
section.

From the equations of equilibrium of the prism under the state of stress just considered, it
follows that the function @ satisfies the dMerential equation

(3)

over the area of the cross section of the prism.
The requirement that the lateral surface of the cylinder or prism shall be free from traction

Ieade to the following equation, which must be satisfied by the function+ on the curve bounding
the cross section of the prism; namely,

;;=l/ Cos (z, u)–z Cos (y, v). (4)

In this equation, o denot~ the exterior normal to the bounding curve.
The moment T of the couple in the pkne of any cross section-is

function @by the equation
T= Cr,

where

C=GJf (&+#+Z $–y$)dxdy,

expressed in terms of the

(5)

(6)

the integral being extended over the area of the cross section of the prism. It is often conven-
ient to replace C in equation (5) by GK where K is the integral by which G is multiplied in (6).
Thus :

T=GKT. (5’)

The problem of determining the torsion function @ subject to the differential equation (3)
and the boundary condition (4) may be replaced by that of iinding a function Y conjugate to @
which satisfk the ditlerential equation

a~ ayi
~2+~=o (7)

loi097~
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and the boundary condition —.

*-~ (~’ +!?) = constant.

The following relations cameo-+ and #:

(8)

(9)

If we replace #by the function ~ defined in the f@lowing way:

we find from (7) and (8) that W satisfies the differential equation

a%!! &+*=o
=+W (11)

subject to the condition
!V=O -. (12)

on the boundary of the section, the constant in equation (8) having been chosen to be zero.
From equations (2), (9), and (10), we find that the components of the sheming stress are

simply expressed in terms of the function v; namely,

(13)

Hence the tangential traction at a point in any crmaection of the prism has the direction of
the tangent to that curve of the family

*(Z, y)= constant

which PW3SOS through this point. The curves, w =,~qgstant, are therefore lines of shearing
Stress.

Further, the resultant shearing stress at-u point & a cross section is equal to

(14) ”-”---

where v denotes the exterior normal to the cuxve *=-a constjan~that .pswes through the point
in question. The resultant shearing stress d a point is therefore proportional to the gr@ient - -
of the function * at that pointn––

Further, when written in terms of tho function W,the expression (6) for the torsional rigidity
becomes-

C=2GJ J &cdy. (15)

@eference 3.) That-is, the torsional rigidity of the prism is equal to twice the product of the
modulus of rigidity and the volume inclosed between.the surface !=

2=*(X, y)
and the plane ,- -.—

2=0.

The solution of. the torsion problem for a prism of a given section consists in determining
the torsion function @ to satisfy the differential equ8tion (3) and the boundary condition (4).

L.
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The torsion problem may be salved equally weIl by determining one of the functions # or q?
from the equations (7) or (11), respectively, each subject to its appropriate boundary condition.

This is the complete theory of the torsion of thin rods. An interpretation of the displace-
ments assumed is that alI points on the Z axis remain on that axis and that every cross section
of the rod except the iixed one is twisted about the Z axis. By our assumptions, cross sections
do not usualIy remain plane but become warped. Fgure 4 shows how elliptical, square, rectan-
gular, and triangdar sections become elevated in some parts and depressed in others. All orig-
inally plane sections become distorted in the same way since w, the longitudinal displacement, is
not a function of z. It is clear, therefore, that. the theory does not apply to sections near a
fixed end nor to sections near the point where the torque is applied. That all cross sections
should remain plane would require that w be constant and the only section for which this can

t

x Nofe: Ccwfoucs

ffon.
Doffed fines

indicafe de-
pression.

.

FIGIXW 4.—Plene s?ctions of nondrcnler reds werped in
tOreIon

be true is the circular section. Figure 5, which is taken from Bach’s “E1astizit/it und Fest.ig-
keit,” shows the distortion in an elliptical cylinder and the lack of it in a circular cylinder.

It has been possible to solve the torsion problem rigorously for only a limited number of
sections. The expressions for the torsion function @ or the associated function ~ for the more
common sections are listed below:

(a) THE CIRCLE:

+=0.

(b)THE ELLIPSE:

Major and minor ams 2a and 2P

+=–a~zv. ,

(c) THE RECTANGLE:

Sides 2a and 2b
n= -

ox
= S.h (2n+ l)az

4=–q/+47p :3 (–1) . (2n+l)ryo
(2n + 1)’ Cosh (2n?l)~a ‘n 2b

n-O 26

.—

——
— .-.

.-——
. .-
—

.. .
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ECNIILATERAL TRIANGLE:

Origin at centroid. Side a—- ~ ..= ,

$=x (3@-~).

Corresponding solutions am known for a sector of a .@rcle, a curvilinear rectangle bounded by
two concentric circular arcs and two radii, figures bog.gded by confocal ellipses and hyperbolas,

a

--r , R. . . .- .—
~QURE 6.–The distortion of plan$ smtions in an eilipticfd rod and the absence of such distortion

Ine. dradarmd

figures shaped like a square but with concave sides and either rounded or sharp cornem, and a , _, ..:
section somewhat resembbg the section of a.railway-rail. (References 4, 5, and 6.)

Formulas for simple sections,
.——.’

From the preceding expressions for the torsion fuQctiorN,the following well-knov formulas
for tmque and maximum stress have been derived: . .

. . .
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Let
T= torque.

6= total angle of twist in radians.

L =length.

G=moduhs of rigidity.

CIRCLE

r =radius.

ELLIPSE

2a =major axis;

2b =mi.nor asis.

EQUILATERAL TRIANGLE

~ a~.@Q6 20T
= 80L ‘ !?‘T”

a = side of triangle.

SQUARE

8we
T= —

4.LI08T
i.11.L’ !l=~”

8 = aide of square.

RECTANGLE

2a= long side of rectangle.

2b= short side of rectangle.

.

The factors K, A, and 7 are dependent upon the ratio of the $des. Their values g@n in
Table I are from St. Venant. (Reference 5.) The maximum stress g occurs at the middle of
the long side. The stress at the middle of t~e short side is given by

71T
!71=p

,- .

-—

J --

-.—. — —,.

-..

.— .—

. .

—. -

. ..—.

———

——

-. .—

-—

—

.-

. ...”

in which 71is a factor dependent upon the ratio of the sides. Its values are also given in Table I.
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TABLE L-Factors for calculating torsional rip”ditg and drw O!redangular w“ma

I . ..—

1—l-
i !1.00 3.0841 .

1
1.05 3.1225
1.10 3.15653

i 1.15 3.18554
! 1.20 3.21040.

I
1.25
1.30 .3. 25035.

3.23196

I
1.35 3.26632”
1. a 3.28002
1.46 3.29171
1.60 3.30174
L 60 a. 31770
1.70 3.32941
L 75 3.33402.
1.80 3.33798
1.90 3.34426
2.00 3.34886.

! 2, 25 3.36564
I . .

1’

1.35063
.-__ -.. .-
.-.--.--—
----------
----------

1.13782
&-------- --j
- .----—-
----------
---- —-- . . k

.97076 I

.91489
----------

.84098
—- —----
----— -----

.73946
----- ----

8.00
$w:

20.00
‘“50.00
Joo. 00

q.,
I 1] -..

. . . . . . . . . . . .. .. ..

When-letters are used for the full sides and not the
side and d the short side, the formtias become ~..

I I
......

“h “.
P ‘r. - ?’1 ‘-”“’.+,., -

3. %873. 3. 9S984
3.36023 411148
3.36079 421307

,11
---

3%M zw;;
3.86133 495985
3.36133 L 99720
3,36133 5.16527

!/ i-- —-----l,-
;. ;:M*: ; 0, b93#7 .“ ]

,j-UJ’’_i;;~;ti

I: 99395 I .U~7iii--
1.99724 -----..—--
1.99874 I .29700. -n --,

-;-;;.1~-,_~~275
-----

—. --— -
1:99999 .18664
2.00000 _:---L-
2.00000 “:”14W3
2.00000

3.36133 5.26611 200000 -:::!!!-
3.36133 5.29972 2.00000 -:6%_..G.-
3..36133 6.33333 2.00000 . ..

---
. . . .

. .

.
. . .

. ...
. . . ---

. .+.

in which j3= P/16, ancl h has the same values as before. It can be seen that if ~is small, we arrive

at the common approximate formula:
cda o

“%-%

As the ratio ~ varies from 1 to 9 the expression $ varies from 0,578 to 0.630.

St.. Venant gives the following approximate formulas for the constants, which agree with
exact values within 4 per cant:

— . .

~=xl+”@~

Using this value of v
{ %)” ‘

+3.36b l–

=&”T”
Q ~a; (3c+ 1.8d)T

“ ‘r-~=~”
-..--.

Both are common .appr@mate expressions for the stress at the middle of the long side.— . .—
ST. VENAN’1% APPROXIMATE FOR~_ULA FOR COMPAQ,T SECTIO.NS. . ,..>_

For fairly compaot sections without any reentrant angles St. Venant- gives the following
approximate formula for the torque:

T=4&Q$

in which A is the area of the section, J the polar moment-of inertia of the section, G the modulus

of rigidity, and ~ the angle,of twistpr unit of length.
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Although St. V_enantclewly stated that this formula applies only to faidy compact sections
with no reentrant angles, it is often applied to other sections, for example, to sections made up of
component rectangles. Rwnilting errors may amount to several hundred per cent in extreme
cases. However, when restricted to sections for which it was intended the formuh is fairly
accurai%.

Formulas for hollow prisms or tubes,
The cross section of a hollow prism or cyhnder is bounded by two closed curva upon which,

in accordance with equation (8), the function v must take constant but, in general, diflerent
values. Denoting by IQ,and V{ the values of w on the outer and inner boundaries, respectively,
and by A, and Al the entire areas inclosed by the respective bounding curves, the anaIysiethat led

B
)?IGuBII6

to equation (15) for a solid prism or cylinder will now lead to the folloming expression for the
torque:

T= –2GrQ~o +2GT*fAi+2GT~~~ (x, y) dX dy. (16)

(References 3 and 7.) The integration is extended over the ring-shaped section. If the
ring is narrow we can replace IL?under the integral sign by the constant

W.=;(W,+V4). (17)

The last term in equation (16) then becomes

2GTv~Qlo –A,) = G@o+ vt) (AO–AJ.

The expression for Tin (16Ythen reduces to

T= 2GTA.(Wt - ‘3?O)=2GT AmA@ (18)
where

~ =Ao+A,
m 2’

A*= *i– !kO. (19)

If we denote by t the width of the ring at any place AB (fig. 6), we obtain (equation14) as
an approximate expression for the average shearing stress at points in AB

q=& +*. (20)

Hence
t~= GTAIP, [21]

and (18) becomes
T=2tqAm. (22)

..-

..

.

--
.—--
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If we form the i@.egral of qds around the cyve .~,= ~~ which may, if t is not too large, be
taken to, be the curve lying half way between the inner and”outer boundaries, we find after
some reduction ,

J qds= 2Qr Ai. (23)

(Reference 8.) Replacing q under the integral in (2?) by its v~ue from (22) we obtain .-

Or

T dg
2~ s~=2A&

T–4A::Q’ - ....

s 7“”

We find from (22) as the approximate expression for tbe stress

—

,-. (24)

(25)

CIRCULAR TUBES

RIGOROUS METHOD:

When the inner boundary of the tube is a line of shearing-stress of a solid section that haa
the same outer boundary as the tube the rigidity of the tubular section maybe obtained directly
by subtraction.’

‘=$(’+V-(’-YI+
.2dr #+tJ &() ( .)~T

4L
~= ‘+

()
*#r #+y

.. ..---- . . . .

4“

r = mean radius, -

t= thickness of wall.
APPROXIMATEI METHOD:

s
~ $=4AG~y

T
!z=z~’

~=+++)+”(”-w..
2

..——. __

. .

Jds_ 2rr
t t’

Dropping the square and higher powers of t, we have the common approximate formulas

T= 2ur%G$ !l”&

is,

RIGOROUS METHOD:
ELLIPTICAL TUBES

The rigorous formulas apply only when the i~er and the outer ellipses are sifiar, that ‘“
when the inner ellipse is a line of shearing stress for a solid shaft having the same outer
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boundary as the tube. The semirigorona formulas, of course, apply whether the eIlipses are
similar or not. L& the inner and outer boundaries be the similar ellipses:

Thea the inner semimajor axis is a and the outer a(l +1] and the inner
the outer b (1 +k).

T=~;[(I+1)4–1] G;, 2T
~,=Tab’[(l +k)’– 11“

semiminor axis b and

---

APPROXIMATE ~1’ETHOD:

Neglecting the square and higher powers of k, the approximate formuIa (24) gives ., ----

-,

ACCUR.4CY OF APPROXIklATE JIETHOD .—

It is apparent from a comparison of the preceding formulas for circular and elliptical tubes
that the results from

and

—

are quite accurate for small values of t. Usually a commercial tube is made with the thickness .—

of metal constant, in which case t in
J

~ becomes constant. While ‘A had best be regarded as

the mean of the areas inclosed bythe inner and the outer boundaries of the section, good results
are obtained by drawing-a curve midway between the two boundaries of the tube ,md taking
A as the area inclosed by this curve. The quantity ds is an element of length along this curve.
Further examples follow.

HOLLOW RECTANGLE

Let the outm boundaries be a and b and let a be the greater side. If tl is the thicheas of
the greater side and t the thickness of the smaller side, the sides of th? mean rectangle are (a – t)
and (b– tJ and

A=(a–t)(b-fl),

Jds 2(a–t) ~2(b~tJ,—.—
t tl

T=2tt,(a-t)’ (b–t,)’. $ T
at+ btl—~—tlz ~=2t(a-t) (3-Q”

The equation for strew is true only along the sides of the rectangle where the shear lines are
parallel curves. To avoid high stresses at the reentrant angles, the inner corners should be
rounded.

-.

----

,—
.—

..
-.—-——
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CIRCULAR TUBE SPLIT” ZUNGITU131NALLY

A tube of mean radius r and uniform thickness t, split longitudinally, may be regarded_gsa
flat sheet, although this fact is not so well known asit should be. If the ratio of r to t is great.
the approximate formula for a rectangle may be applied and

T=; (2?n.tqG;l

=:m#G&

For the closed tube, the approximate formula is

T =2m%G$

and the ratio of the torques for the same ~ isL
tz..-,

3r2

It can ako be shown that for the same maximum stress the ratio of the torques is approxi-
mately equal to . .

t

%“

The split tube, therefore, is much weaker under torsion and very much less rigid.

Solid sections of irregular shape.
We have now discussed substantially all of the sections for which practical formulas have

been obtained by direct mathematical treatment. There remain such sections as the I, T, U, and
L that have not yet been brought within the range of mathematical analysis. These sections
normally occur in baams or in compression members and not in members designed primarily
to take a torsional couple. Nevertheless, such members are all subject to torsion and the loads
that they will sustain may be dependent upon their torsional rigidity, Because of its importance
in this connection, our investigation has dealt largely with torsional rigidity rather than with
stress.

We will first consider the calculation of the rigidity and later touch upon the matter of
stress. For any tiction we can write

T= KG$

in which K is a constant that depends solely on the shape and dimensions of the cross section and
involves the fourth power of a dimension (see the preceding formulas for regular sections). This
constant K is usually spoken of as the ‘(torsion constant” of the section and will be so referred
to in this report. Our problem is to determine a suit~ble method of calculating K for various
irregular shapes. , ,. =

Before embarking upon an extended seriesof tesk, it was necessary to make some preliminary
tests of wooden members of simple section in order to determine to whatmxtent certain factors
governed the torsional properties of wood. As a usual thing, the modulus of rigidity associated
with a traction in a radial plane is not equal h the modulus associated with the traction in a
tangential plane. In other words, the elastic constant for “i shearing stress acting in a plane at
right angles to the growth rings is not the same as for a shearing stressacting in a plane tangentig~
to the growth rings. This fact introduces two modfi of rigidity into the problem. There is a
third modulus of rigidity for wood which has to do with the stresses that tend to roll conti@oW
fibers past each other, but when a member is ttitid about an axis parallel to the grain of the
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wood this ek.atic constant does not come into play. Our first problem then was to determine
what diilerence, if any, there was between the radial moduhs of rigidity and the tangential mod-
ulus. Other factors pertinent to our test procedure were the effect of moisture content and the
effect of rate of strh. Each of these three factms was studied and a brief discussion of each
folIows.

Moduli of rigidity of spruce.

It is shown in Appendix A that a rectangular prism, two of whose axes of elastic symmetry
lie in the plane of the cross section, behaves as a prism with a pamllelogrammatic cross section
when these axes are not paralIel to the sides and as 5 prism with a transformed rectangular
section when the axes are parallel to the sides. The modulus for the transformed section in
either case is computed from the two moduli involved. It is alscahown that if @t is the modulus
associated with the plane tangential to the annual rings and G, the modulus associated with the
plane perpendicular to the rings, the relations of Table II hold.

TABLE II

I 1 I I
Sicieaof trans- .

Sides 2a, 2b formed reo- Modulua
tangle

II
,
I -1

Plain-sawnboard-------------- F
~~

2“1g’2b 4

d
Quarter+awn board-----_---..--~ 2a ~j 2b GrJ/$

I I I 1,

It was possible from these rdations to determine the value of G, and G, for any plank by
testing a quarter-sawn and a plain-sawn piece cut from that plank. Tb.iswas done for practically
every piece used. These minor specimens were 1 by 3 inches in cross section. Occasionally

, slight season checks, which run radially, caused the quarter-sawn pieces to be less rigid than
their corresponding plain-sawn pieces, whereas with sound material the quarter-sawn piece
should be the more rigid, since G, is greater than G1. It was found that for Sltka spruce G~-was
about 90 per cent of G,. This means that quarter-sawn rectangular beams of Sitka spruce
with a large ratio of long side to short side will average about 10 per cat more ritid ~ torsion
than similar plain-sawn beams. Ordinarily no great error will result if the mean modulus as
obtaked through the test of a circular section is used in calculating the rigidity of beams. It
may, of course, introduce on the a-rerage about half of the dii7erencebetween the plain and the
quarter-sawn values, or an error of about 5 per cent. It is much easier to make square seotions
than circular sections and the difference in mean moduIus obtained is practically nil. Square
minor specimens, therefore, were tested as a check against the values obtained from the 1 by 3
inch minor specfiens.

As a check against the mathematical analysis given in Appendix A, a few series of tests
were run on beams of rectangular and of elliptical sections with the annual growth rings at
various angles to the a..es of the sections. The results are show b ~@re 7. The curve for
the eIlipse was calculated by means of the relations given in APPm~ A; the circl~ along the
curve are test vsh.m. The curves for the rectangles represent the observations; they agree in
form with a curve calculated for a difFerentratio of the two moduli.

Effect of moisture content,
In order to obviate the necessity of making moisture adjustments, the major and the minor

test specimens were always kept in the same condition. They were never separated af~r
fabrication and the time between the testing of the majors and the minors was reduced to a
minimum.

A seriesof tests was made, however, to learn enough about the effect of moisture content on
torsional properties to permit the recommendation of permissible stress values for spruce at a
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definite moisture content, Twelve matched square pi~c~ were tested, 3 green, 3 at about 21fi
per cent, and 3 at about 7 per cent-moisture content, The results are given in Figure 8, which
shows the variation with moisture content of three properties; namely, modulus of rigidity, fiber
stress at elastic limit, and ultimate fiber stress. The results from this small number of tests
were in agreement with relations previously established at this laboratory.

Effeot of rate of loading.
As tests were run on members of various sizes, the rate of. strain was kept fairly uniform in

order not to introduce this factor into the results. The ordinary test, however, took several

J/tka. &WCC

Anqle Beiwecn Rinqs and Long Stale- Deqree6.

Green Ches fnut

G~

+

~
.*
%

Anqlc 6efwecn Rinys and Lonq 5ide-Pcqrccs

SitkaSpruce

- Anqle OetffCC;-R)hgS and Maj; AXfS-DepCS

FIGUEE 7.—Variation in tomfonal 6tlfCn&wwith dln?ction of
anmral ringx on the cross smtion

miIIutes, whereas the duration of stress assumed for aircraft stre~es is three seconds. Conse-
quently, in order tu recommend torsional properties of spruce from test, it waE necessary to
know something about the variation in these propwties with ra~ of strain. A matched set of
cyltidrical specimens was made and equal numbers of them were t~ted, respectively, at each
of three rates; these rates were b the proportion 1 to 10 tII100.” It was fdund that accompany-
ing a 10 to 1 change in raiw there was a 5 per mnt increa~ in moddus of rigidity, a 10 per cent-
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increase in ultimate fiber stress, and a 20 per cent increase in fiber stress at elastic knit. The
exponenti~ increase of stress with increased rate of fiber strain has been preciously observed
at this Iaboratay.

Torsion tests of simple sections.
k the next preliminary step before testing wooden beams of i.rregu.Jar section, several

series of tests were made on spruce beams of simple section. Beams wit-hthe circle, the square,
the ellipse, and the equilateral triangle as bounding curves of the cross sections were cut from
the same plank. The dimensions and the angle of twist for a given torque as determined by
test were substituted in the rigorous formula previously given for the corresponding sections
and an apparent modulus of rigidity calculated thereby. Four of each type of beam were cut
from each plank. The results are given in Table III. The planks were chosen so as to obtain

I

A4x&m, per cent r

FIGCRES.—ReMion between tomIonal properties and mofsture content of S1tknspnrea

a wide range in spetic~avity -dues. Consequently the first two (Table III) are below the
minimum specific gratity (0.36) allovrable in aircraft construction.

TABLE III

P1ank

6-1-58
6-1-25
6-149

Mo.duli of rigidity

~:$:; j M. of E.

I
Efn~~eal bending

Circle Ellipse~ S:are

.

All specimens were 45 inches long and the angle of twist was measured over a 24-igch
gage length. The nominal diameter of the circular specimens and the width of the square
specimens were each 1Z inches. The major and the minor a.sesof the elliptical specimens were
1%inches and 1 inch, respecthly, for plank 6–l–58 and 1%inches and 1 inch for plank 5-1-49.
The triangular specimens were 2 inches on each side. An error in grinding the shaper knives
for the set with elliptical section from plank 6-l–25 necessitated the culling of that set. Aver-
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aging the results from the first.agd the last sets in T@Je III, we find that the apparent modulus
of rigidity for the square is 1.6 per cent lower than for the circle, for the ellipse 1..8percent higher,
and for the equilateral triangle 3.8 per cent higher. & pointed out in Appendix A, the direction

-.

of the annual rings with respect to the axes of the section has little effect on the rigidity of
sections whose boumiing curve is a square or an equilateral triangle. For the elliptical section,
however, them is some difference. Consequently, the fist set in the table was cut with the rings
parallel to the major axis and the second set with the rings perpendicular to that axis. Had the
specimens been longer, it is thought that the results for the triangulrw.sections would have
been somewhat lower. The ends of these specimens were enlarged for the application of torque.
With the circular section such enlargement would make little difference as long as the points at
which measurements were taken were three or four diameters away from the enlargement.
This is because in the circular rod plane sections remain plane. In the triangular rod the tend-
ency of the sections to warp is hindered by the enlargement of the ends with a consequent
increase in stiffness. The same fact is true, although to a less extent, of the ellipse. The rods
with square sections did not have built-up ends. Taking aU these factors into consideraticm,
the agreement as to torsional rigidity as calculated by the rigorous formulas is considered quite
suitable.

Table IIlyields another interesting relation. If “themoduli of elasticity in the last column,
which were obtained from minor bending tests, are. divided by the corresponding moduli of
rigidity for the circular section given.in the third column, the quotients will average 15.6. T@
relation for the average of-12 rods checks the relation obtained in 1921 for .20 rods of cjrcular.
section that were tested in torsion in connection with another investigation. The mean modulus
of rigidity for the 20 specimens was 100,200p.s. i., and the average modulus of elasticity 1,569,000
p. s. i., or a ratio of 1 to 15.6. Hence the ratio for spruce k evidently between one-fifteenth . ._
and one-sLxteenth, whereas for. most metals it is in the neighborhood of two-fifths.

& a further check, four rods of elliptical section were made with a major axis of 2 inches.
and a minor axis of 1% inches and were tested within the elastic limit; and then were cut down
to a 1%-inch major axis and 1M-inch minor axis and retested. The apparent modulus of
rigidity in the first cash averaged 77,325 p. s. i., and in the second 78,162, a d~erence of only
1 per cent, A repetition of this series resulted in a di.tTerenceof slightly over 1 per cent but
with .f,he results reversed. Sections with equilateral triangles as bounding curves were cut— “
down in the same way, though in three steps, first with a 2-inch side, then a 1%-inch side, and
finally a 1%-inch side. The average apparent moduli for four hesms wme 73,350 p.s. i. for the
2-inch side, 72,250 for the 1%-inch side, and 72,650 for the lx-inch side. The maximum
difference is about 1 per cent.

From” these tests it appears that dependable re~ulta can be obtained by using wood as a
test material, ”

Torsion tests of irregular sections.
Following these preliminary tests, additional teskwere made on beams of irregular section.

Such sections as I, T, L, U, and Z were used with and without filleti at-the reentrant angles.
In addition to varying the radius of fillet, the ratio of the thickness of the web to that of the
flange or of one leg to that of the other was varied through a considerable range.

The beams were 8 feet long and the angle of twi.s.swas read for a gage length of 36~@ches ..-
at the center, The results of these tests will be discussed later in connection with the coordina-
tion of the mathematical and the experimental work in the form of empirical formulas.

The use of soap films in solving the torsion problem for irregular sections.
The value of acmp films in determining the torsional rigidity and the stress in twisted

beams depends upon the mathematical analogy between the. torsion problem and that of a
membrane, such as.a soap film, under a uniform excess of pressure on one side. Attention was
first called to this analogy by Prandtl and very extensive use of. it was made by Grifiith and
Taylor, (References 9 and 10.) The method is extremeIy useful in that it offers .a means of
determining the torsional rigidity and the stress of important irregular sections that have not
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yielded to mathematical treatment. An apparatus was built and, after it was fo~d to give
results for simple sections that agreed closely with cakdated values, tests were made on hgular

-,

sections. The construction of the apparatus and the method of using it have already been
described under the heac@g “Test Material and Procedure.” The mathematical basis of the
method and a brief discussion of the technic follow, The test results will be be dealt with later

_

in connection with proposed formulas for irregular sections whose component parts are rectangles.
In presenting the mathematical basis of the soap-ti method of test, let a very thin homo-

geneous membrane be stretched under uniform tension T over an opening cut in a plane sheet
of riggdmaterial and let the membrane be fixed at the edge of the opening. If a uniform excess
of pressure p per unit area acts upon one face of the membrane, the small diaplacement z of points
of the membrane will satisfy the ditTerentialequation:

(26)

and the condition that

at the edge of the opening.
Let the opening and the

shape. If we let

z=” (27)

section of the prism under consideration be identical in size and

Z-ET*
(28)

in equations (26) and (27), we obtain equations (11) and (12) for the function ~. Hence the
function w appropriate to the torsion problem for a section of given shape is proportional h the
displacement z of a homogeneous membrane stretched over an opening of the same shape as the
section. The proportionality factor in (28) is determined by means of a film stretched over a
circular opening and under the same pressure as the test b. It follows from equation (15)
that the torsional ri@dity of a prism of the given section is proportional to the volume inclosed
by the soap film and the pkme of the opening. Further, the contour lines, z= constant, of the
soap tim correspond, in accordance with equations (13), to the lines of shearing stress ii?= con-
stant in the torsion problem. And the slope of the h at any point, as a consequence of equa-
tion (14), is proportional to the magnitude of the shearing stress at the corresponding point of
the section.

b employing the soap-b method, an opening that repreeente the section of the prism to
either a reduced or an erdarged scale may be used. It is necessary only to observe that the
ratio of the torsiomd rigiditi- of two geometrically aimihir sections is equal to the fourth power
of the ratio of corresponding linear dimensions.

To obtain well-defined edges coinciding with the boundary of the cross section, the edges
of the openinga were beveled at an angle of 45 degrees. Our experience has been that this does
not entirely eliminate the errors at the edges. The film & not aIways attached at the upper
side of the beveled edge but frequently hangs at an intermediate point. E-ran when great care
ia used to avoid a surplus of solution, there usually is a Iayer of solution along the edge of the
film that tends to lower the level in ita neighborhood and to make umcertainthe actual position
of the boundary. Further, at points where the stress is great and the Nm consequently is steep,
there is a tendency for the h to run out over the plate.

Errors resulhg from edge effects can be avoided by using as boundaries of the cross sections
contour lines other than ihe actual outIine of the opening in the plate. These contour lines, if
taken near the edge of the opening, approximate the shape of the section with sufficient accuracy.
The dimensions of the section bounded by the contour line in question can be measured. In
the tables giving the results of our experiments with soap illms, we have included, in general,
data from one or more tier contour lines as weUas from the actual outline of the opetig. We
have thus increased the number of sections studied. It is our feeling that the results from the
inner contours axe more reliable than those from the outlines of thwtip%hhigs. In every caze
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an inner contour line of the spherical bubble over the circular opening was used as the boundary
of the comparison cylinder.

There are various ways of finding the volume i&losed by the teat bubble. A satisfactory
procedure is to take contour lines at frequent-intervals, planimet.arthe areas inclosed by these
lines, and obtain the volume between the planes at dtierent levels by the average-end-area
method. ‘

For further details in regard to the technic of the soap-b method, the reader should
conauIt the papera by Gri.f6th and Taylor. In our.judgment, the high degree of accuracy that
they attained in certain cases is not-always to be expected.

Formulas for irregular solid seotions,

Combining resulte obtained by soap-film tests with known mathematical facts, Griffith
and Taylor developed an empirical method of dealing with solid rods of any section, which is
explained in Appendix B of this report. The meth~d gives results for the torsional rigidity of
fairly compact sections with erro~ of only a few per cent. For-certain sections, however, the
errors are considerable. In their report on the method, they attribute a discrepancy between
their results rind those of published experimental work to a want of homogeneity in roiled I and
U sections, Some of our soap-flm experimented work on I and U beams, however, fads to
check theu forrmda by as much as 25 per cent and the discrepancy ~ in the same direction as
that mentioned in their reports, the formula giving-results that are too high.

In “ah“exterisiveinvestigation .of the torsion problem, Conatantin Weber developed, on the
bask of the usual mathematical theory, approximate formulas for the tmsional rigidity o~ i
large number of sections and for thg maximum stress in these sections. (Reference 11,) Tor- ,
sional rigidities calculated by his formulas are low in comparison wi@ our test results.

IrI dealing wj~ such sections as the L, U, Z, -T, and I, Weber replaced the given section
by an equivalent rectangular section. To represent the situation at the junction of two rectan-
gles., he chose the length of the equivalent rectangle to sacure a certain desired area, Now
changing the length of a rectangular section in a certain ratio does not alter its stiflness nearly
so much as a corresponding change in the breadth.. There is ,essentialIyan increase in breadth
of section at the junction of two rectangles, for instance, at the corner of an L. This can not be
compensated for by merely increasing the length of the equivalent rectangle in the manner
chosen by Weber. Accordingly, his formulas give values of the torsional rigidity considerably
below those that we have found by means of direct torsion teste and tests made by the soap-
film method. It ahodd be noted that Weber assumed that-fillets weie aIways present, their
radii being equ~ t~ the width of the narrower of the component rectangles of the sections.

For sections such as I, U, and T, whose ccmponent parts are rectangles, the fo~owing
approximate method for calculating stifbess is proposed as a result of our study; we shall first
show its derivation.

The problem is to find Kin .

7’= KG:.

Now K is a constant that depends solely on the shape and the dimensions of the cross section,
and involves the fourth power of a dimension. Figures 9 and 10 show that at the junction of
two component rectangles there occurs a hump or hjll on the soap tire. This hump shows that
the rigidity of the complete bar is greater than the sum of the rigidities of the separate rectan-
gular parts. The volume of the soap bubble, of course, represents the rigidity of the entire bar
and the increased volume at the hump in the bubble represents the amount by which the rigidity
of the bar exceeds the sum of the rigidities of its separate rectangular parts,

For an I beam, we write
K=2K, +K,+C

in which El is the torsion constant of one flange and K2 that of the web, while (Yk the term that
is to express the additional stiilness caused by the two junctions of the flanges and the web.
In place of Owe write 2 a Ddin -whichD is the diameter of the largestmirclethat can be inscribed
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Tesf-3

contour E/cn7iions
.054-.104-.154-.204
.Z547W4-.354-.379
7@ of Bubble.404

Tesf-14

Coniour Eievu)’ions
.&M -.018-.038 -.053.@8
.138- .173-.178-. 203-2%8

TOP of Bub&/e.238

—

Note:- All Uh?ensiofls are in Inches

.—

Cothur E/evufions Contour Elevuflons
.01.2-.037-.062-. 087-. I12-.H7 .003-.017-. 057-.06771/7
.187 -.237-.%87-. 337-.357:377 .128 -.167-. 187-,3/%

i3p of Bubble .387 ~p of Bubble .237

FImm 9.—Lines ofaheadngstras.s for I beams in tardon. (From wap-~ I* on bauwcttou”)

1043!3i-3~5
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7%s+-20

CoHtiur Elewttioffs
.013-.038 -. W-.@113Il3 -.!33
.145-. IS6-.I78 +98 -.218-.230

7@ of 8ubble-.235

Contour Elevfftions
.oo5-.o[f -.019-.053
.103-.153-..209-.233
73P of Bubb/e,Z53

N!?!!S?!!

CofltouF Etevufiotrs

.014-.039-.064-.089-.104

.119-J59-.I97-.2O229229
Top of &bble -.239

Note :-All Dimensions arc in Inches

FIGURE10,-LWa ofshearfng strtw for U and Z@mn@ totion.

Tesf-9-2

.

cOhfOUP Elevations

.O(M‘s028-.058 ‘.078 -J85

.098 -.118-.138 -. J4B-.J5L3
~ of Bubble .163

(From E08p.!?.lmte.stson hfdf6ectioIIsJ
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at the junction of the two component rectangks and a is a factor to be determined. We then
.— —

have
K=2.K, + K, +2aD4.

An examination of F~e 9 wiIl show that the bubble tapers down at the ends of the flanges,
_-—

as it normally would in a rectangle, while in the web it behaves-more like a part:of a long rec-
-- —-—

tangle. For this reason, we shall caIcuIate K1 by the normal formula for the rect.angle “.
—=.

K1= albfp or Kl =albla
(:-’:)’

nnd K2 by the formula

The factor a for any section depends upon two things; the ratio of the radius of the fillet to the
thichess of the flange and the ratio of the thickness of the narrower component rectangle to

D .2 .4 .6 .8- 1.0

cY for Tjuncl%On off wo component rectonales

I I I I

I I f
- I , , r , , , I , # , r 1 1 , , b , 1

0 2 .4 .6 .8 Lo
Width of mrro w component recfmgle

Ratio, Width of wide cmpcwen f rectangle

FIGGBE 11.—VaIuesof a for computfng torsfonal rfgfdfty of wctkms whose mmponerit
palls are rectangles

..—
.—

..—
.—

—..—

-.
-. -..

-—
.-—.._——

—
.—

.—_
.

the thickness of the wider component rectangle. The vahes of a for clifYerent combinations
of these two factors, which were obtained through a variety of experiments with soap films and
torsion tests of actuaI hesms, are shown graphically in Figure 11. While our eqeriments were
not estensive enough to prove conchs.iveIy that for a given ratio of radius of ~t to thickness
of flange the variation in a is Linear for varying rdos of the thicknesses of the two component
rectangles, we feel that such a variation is close enough to the truth to vnummt its use. Table
IV shows how K caku]ated by this simple method for I sections agrees with resuh obtained by
actual beam tests and soap-film tests.

—-~.

.-
. ..-.

.

.-: ..-

... —-.

..—--.-

—_

. ---..

._—

●
✎✎



.

700 REPORT NATIONAL ADVISORY CO~MPITEE FOR AERONAUTICS

TABLIO lV.—’Vakw of torsion constant K jor I-h?a?n8

I-7.._ .-
1-s. . . . . .
I-9----
1-10. . . . .
1-11. . . . .
I-12.-–
I-is. ___
I-14. . ..-
I-16___
I-16.._.
1-17. . . . .
I-18_ . . .
1-19—-
I-ZL...-
1-26. . . . .

O.mxl O.WJ 6.46
.408 . 4m
.501 .601 W
.624 .876 ;:
.624 .876
.625 .874 Am”

. &74 :%
:% .872 .
.624 .878
.622 :2
.623 ;%J 8.97

&40
:% ~lM& 4.50
.498
.407 L~ 2$!

I 1.

Total
width

.2.240

R%
3.740
2.740
2.740
2.740
3.744
2745
2.746
2.746
2.750
2.754
2.760
2,760

—

[DImenetone are in tnohee]

ACTUAL TORSION TESTS

Fmt
radyra

-

0

8
0
0.2-54
0
.250

0
. am
.500
.750
.876.
.876
.876
.876

-

D

0.626
.622
.625
.987

1:;0$

1::;

L lW
1.224
1.840
L502
1.498
1.492
L 492

..-.

D’ 2@-Ka %

,.. .

0.168 .0. m8 0.802
.160 .359 .800
.154 ; :$”
.947 i Y4

1:K?J :1.161
L 15$ :%

l.. L 167 .:35:
L 149
L 168

kz 1,149 :%
8.806 ;% ,3m

:3

2% ‘“!; #

.-
SOAP-FILM TESTS

aioo
.296
.801
L 467
L W
1.47a
1.6XI
1.35d
L 400
L S23
2.266
27m
2.696
2.784
2.571

_

Pr*
posed
‘brr?&

a 809

: F2
L 867
L 543
L 360

;:

1.814
3.24m

2%’
2.779
!2.702

-

Differ-
eneo

0.321
.817
.835

L 416
1.d24
L 412
L 081
1.43’4
L 625
1.WI
!2.8E0
s..182
8.67S
a. 070
a 0$0
- :.

8-..... L2d0 L 760 6.510 L MO 2.46e w 06
14. -— L 756 L2%6 1:: 6.517 .875 2.276 26.84 $$ !:?j :g [%2 Q! GE ~~
p-$- L650 L lW 9.82 h 160 . 9m ; ~1 2L 38

L280 10.08 5.512 LZ%I
lwi:. t go L 050 ‘a.00 1:~ :g
152---- L !%0 L267

g: .$$ ;* $; ~: -:: g; $;

10.M 1%

j __ , ,

la 20 +Ia 6
16-2-01. L16TI L 184 ,9.$2 6.3111 .640 i 793

12%62
1;% 9.22 .40s 1276

16-2-02. L 105 L 105 9.!% 5.!266 .670 L 718
1“ . 7.M I .W laM

;~fi +:JJ ::$j ~~

.. -r_ ~ . ...,.

All cakulatlona were made with a 20-inohslidenrle.
..- . . .. .

Cl and C2 indicate that first or second eonkmr of the plate wee u.wd ae the boundary of the orose section.
D- Dlemet.m of largest ineoribed oirele at jnnction ofoomponent rwtangles.
K=2KI Krl-2aDi

tK,.=torson oonstant of fianm.

.-

.. !
i-.

,.

Ki-torsion eonetant ofweb;
Ra.writein column headed W. and T. formrda” ware calculated by the Qri&h and Taylor methcd.
D! flerencae are exprawd in Wr writ of test mhres.

An examination of the.formula discloses the tact that the formula still holds at the limit
where the web approaches zero thickness, since a & also approach zero. At the other limit~

16
where the flange approaches zero thickne.w, o again approaches zero, butt he valuo Kz= — a~. J22

is somewhat in e~or because the,web can no lcmgerbe considered a part of a long rectangle.
From the rtilationshold~~ for an I beam, we obtain results for a T beam directly. The

T beam has ordy one junction of component rectangles and consequently only 0 in the formula.
Also & must be modified slightly. The web now C1OSCSat one end, as it -wouldnormalIy in a
rectangle, and therefore KZis one-half the K of a iiictangle twice .aslong or

Ks = a~btp,

the value of IJcorresponding to the ratio 2a+& Our fial result is
..

K= El+ K;+aD4.

For sections such as an L, we proceed in the same way. The wider leg is considered as the normal ._
rectangle and the narrower leg as a part of a long rectangle. h examination of Figure 10 will
show why this is done. I?i@re 1“1giveti the proper values for ct. For sections made up of L
junctions, such m U and Z sections, we proceed ~ ihe same way and add a correction” for each
junction.

In applying the soap-h method to U and Z sections, advantage was taken of the .sym-
metry of these sections with respect-to a line perpendicular to the bar at its middle point; L:
shaped openings in the teet plate, having a vertic~_septum “atthk fids of one or both legs) were
used. When the l&a of the L were of unequal thickness, it was desirable to have a septum at
the end of each leg in order to be able to calculate tyvo_typesof U or Z sections from a single test.
By means of a simple calculation the effect of th~,septurn at the iid, when one is not desired,

. . .
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can be removed. Values of the torsion constant given in Table V for U and Z sections were
obtained in this way from L-shaped openings.

The actual torsion tests on wooden beams with ~ T, U, and Z sections (’I’able VI) yielded
apparent values of the torsion constant that were considerably greater than those given by the
soap-film method for the same sections. The excesses in the valum thus determined are attribu-
table to two causes:

(1) The stiilening effect of the blocks that were glued to the ends of all beams tested to make
the end sections rect.anguIar. These blocks hindered the warping of the cross sections that
takes place in the twisting of all cylinders or prisms not of circular section. (Fig. 4.)

TABLE v.—~aiue.s of torn-on constant K jor U or Z beam

II I Tidcknes9
‘ Test I End of Iege

T Legs

I
6-1.-.. Without SeptUM
~~~1. ._-.do --------

___.do----
7-.2=cI. __.do---.-_–
T-2-C2.-_ -do_____
&L.__- Ao-----
9-2-CL _-do-------
%?-C2-_-Xio___ A
1o----- with eeptum-_-f

<

10-Cl.. __.do -------
10-C2. - __do. .-.__
IL... - __.do -----
11-CI.. .---.do....__
11<2-.’--_-do--------_

{<

M---- _~:::____
13---
12-CI. . __-do---~~_-
13-C2..—Jlo----
ls_

-1

_-do ______
18-C1- - ._.do. .- . . .._-
18-C2--__-do _____
19-... _do-do --- ______
IP-cl. __Jlo-----

PI

lo-c2. - __do--___–
m....------.do.-----_
m-cl- do____–
%)-C2--__.do___

Ber

L495
Law
1.256
L226
L 160
LIXS
.WO
.810
.76.2

L 4m
L4M
L607
L&-O
L 373

?E

H%
L&l)
L4W
L 3m
LE07

%

k=
L 310

[AUdfmendons ere fn fnches]

Overea

Rn.&

6.51
6.24
h m

H
5-61
5.41
6.!23
6.m
6.97
5.96
6.m

:%
502
&m
6.09
5.P4
&cs
6.02
5.B
&01
6.S3
h 91

:U
5.?a

met
S&

o
a

!
o
LW
L04
L 14

Xl

%
.n
.93

in
L62
LlW3
.76
.Ta
.S5
.2a
.29

i%

?:

D

L 765
L 620
L 4i8
L 425
L2.M
L 515
L 451
L220
LOOO
L640

;E

:%

:%
S.!zn
1M2
LSSI
Li60
LMO
Lam
L 815
L724
2149
2.059
L W

++

AUcalcnktfonsweremsdewitha!Wncbsllde rule.
Me with SeLXUDMat ends most be treattim partsof long recten.sk.
Cl andC2 fndkete tbet Erst or eemndmntour d Is@ wes @ x the Ixmndary of b cross seetkm.

7D-dtwneter of largest Ins&bed elcele at the junet on ofmmpment redengiee.
K-2 KI+K1+2!ZLX
El-torsion mo9tent of one leg.

soar!
hnK

la 53
18.24
1; g

ac$
&m
h U

;;:

lfAi6
26-IS
24E3
%).00
la. So
30.72
2S.40
25.22
Ls.82

%E
23.74
21.m
17.16
X24
~.

I

—+
b Rmt
–O. 6 17.h
–1 o la.33
~; I;ll

–L2 &40
i-12 6 7.4’J
$~: :g

~+; 16.Q

–3: 2 H
+L O !X7i
-2.2 23.39
–L 6 !2216
–L 9 W 67

0.0 a456
–L 7 3L 25
-6.6 27.25
+2.0 !ZL62
+L ii 17.a?’

ni %R
+L O 23.la
+3.1 la 76
+6. 8 8LZI
+L o %.W
+a. o 2).66

-—

.- —

—.-

.-
..—.—
‘:“–&“

.-—:.S.-—
. -_

._ ... .--—:
.—-—. =-

. —~-- ... .:—
.- .-=, .,-—

.-s.=.&
.-=

-—..-——
——...--_—-

~
..-

_——..—
-=

..’ =

—
-=,.”. ,,
..-,

-=
--

.-J

+

——
---

.:--—

K~-tme[onmnstent of bar. -
Dtffermces ere~fnpermntoteas !lImvaIues.
Fteeultshe&d@G. and T. formrdawefe~dted by the13rftllth and Taylor method.
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TABLE VI,—1’alue.s of torsion conetant K for L,T,U, and Z beam8 obtained by actual teet

[AHdfmaudons me in tnoh@

L-BEAMS
.

—.
Thickness Owrall

.+. ,.

Test
I?nlet “ “’
radius

ye:g Sf:t
D ;.. lx

“L.?

::: - - ““’” A&

“K1+Kz.“a
tmg:t R .—,, -..-,.

“. . .
L 1. . . . . . . . . . . . . o:~, 0.W2

1’,
&24s a 788 aal 0:}

B

o.m o.!211 ,.6.lca 0.275
L 2..-....-..__ .E02 gg 2760 .m6 :% .I&s .276
L3.. .. . . ..._._ .MY1 ..520
L4. . .. . . . . . . . ..- ..601
L5.-..._-..-_ .W

:% ~~ $: {:” :~; %J ;CEJ “ %J ;ZJ

w::::-:::-::
g ,“,:ij H% ;%? :i’i ;:n” .:% :% ;% :g

L 6-. ... . ..__

.- ““8.246 2737 .!@ .&l ,139 .20S .10S .W
. . I 1 I

.J. ., .._ .. =-.

. .

.—

.

.-.

-...,

.-

. .-

,.

....
.....-

—.

D

Q630
.764
.m
.754
.626
.7M
.,376
.Wa

........
.632

..-—-
.eao

.-;. .

....,.

-w
,

}

,, :.

. . . .

.~-

.

,, ~ ,.

,.. .

r:

.“

.,.

FfIlet
radiue

R

o
0.26
0
.26

0
.26
.64
.76
0
o’
0
0

Tot ‘
twidt

7-
T l......-..._-.
T 2...______
T EL..-.._ -__...
T L..-... -..–._.
T 5.... . . . ..-_-–
T 2....-._. _.._..
T 7-_._;-----
T 8...-----------
T 9-.-............
T lo.. -----------
T lo.. . . . . . . . . .
T lo. --.-. _____

-1+—[—l—1~—l
0.274
.H3
.276
.312
.261
.204
.3s6
.473
.262.

:%
.%6

0.238 0.243
.273
.236 :Ei
.277 .269
. !231 .237
.278 .awl
.W .645
.4E0 .413

...-— —
-.... ..- -.
.. ----- . .
..........
..........
....._ ..

0.m
..--—

.. .---------
...-----.---.--—
..........I

........-.........
.240 .24(

.......... .. .....
.238 ,24~.

‘1 i I I I .,,.1 J.. ----- ___ .

l.. “.
.-. _~.. ,.. -.— --

K t “’I Thfdrness ] , OWall
Fdlet
‘adkrs

R Test

-

0.~

.43a

:E
.324
.462
.634
.464
.423
.468
.614
.498
.484
:2
.286

:2
..254

~4 . 2K1+K
~

- —.

Test 1-

-1a

]

,.,,,...’

03?% ““””
.390:Z-z
.349 -.-––-
.Wll ..-- . . . .
:’g ...—

-...-=
.376 .........
.5&2 .-------

, j# ;.-.,...
--------

#

lpx
........-

:1 . . . . . . ..-
.345 ....-----

-:EJ ::;:::
. ...

.2U8 . .
y; .::Z:

.>.....-.

D

am

:zJ

:W

:%?
.336
.668
.761

:%“
.636

%&

.610
; 626

.,.628
-

2a

0.;:
.140
.215
.240
;;;

.096

.140

.215

.296

.::

: Iii
.216
.140
.346
.?46
.246
.246

~

Bar

0:~

, 5)2
.ml
..379
,492
.623
.747
.496
.496
.405

.%

.499

.531

.4s7

.375
376

.875

.376

‘ropw2t
tormtia

0.338
.36?)
.239
.363
.161
.224
.361
.627
.324
.361
.400
.469
.364
.330

:%J

,189
.160
. 16s

o.Ial 0.321
.:; .819

.321
.Z34 .89

.,&
.:!U . .’M3

.323
:% .4U0

. 3m
.lsi .209
.318 .3C13

‘.4s3
:OCJ ;%

““.204 .316
_ .116 . 31G
..133 . Ml
..133 .141
.:&6 . MI

.1421
u l... ________ 0.6R2
u 2._. _- . . . ---- .m
U 8.. - . . ..-__.- .W2
u 4. . . . . . ______ .M!l
u 6. . . . ------- .280
U 6--.._._-.–. ; ~;
; ;::: _...___-

—.—- .377
L19--------------- .496
u lo. ------— .493
u n--------- . 49&
rJ lo--- .-..._ ._. .496
z l . . . ..-- . . . .._. .*
z 2___________ .489
z .3. . . . . ..-.- ___ . Ml
z L . . ..-.. -..-.. .497
z 5_ . . . .._.--._ .376

:;::::;;;::;:::: %J
- . ----

$6
.23

:E
.2-5
,25

0
.26
.60
.76

00.

:
.60

%
.25

..
.,,.

,, .—.-

.. .. !<

....._,:
,...-..-..=

.> I-.. -r -1.—
Alleale.olationsmm made witha2Mnob dida ruk
Waber formuls aasnnms a radhra of iUle4equal to the thiokness of the uqrower component redangle.
T 9 rmd T 11 did not hava web glued tp flange, They sot, therefore, as two se~rafe piwes axcrpt for additional atlffn.essresrdting from ffller
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(2) The combination of bending and torsion caused by the fact that in many instances the
axis of twist did not coincide with the ask of the figure.

Neither of thesecauses wotid be as effective with I beams as with the sections just mentioned.
The soap-flm me’thod furnkhes the value of the torsion constant K associat~d with pure

torsion under ideal conditions as to the application of torque at the ends. Usually an actual
beam will have a margin of safety as regards torsional rigidity because of the fixity of its ends.

CONCLUSIONS

The soap-iihn method pro-ied to be a valuable aid in the solution of the torsion problem for
cylinders and prisms for which no rigorous mathematical solution has been found. ~~ot only is
the method capable of furnishing the torsional rigidities and the stresses with considerable
accuracy but it also gives a visual representation of the actual situation as regards torsional
stresses, a representation that can be readiIy interpreted by the observer.

From a study of the soap-tilm tests and the actual torsion tests, it has been possible to
conclude that the torsional rigidity of prisms with sections such as I, T, L, U, and Z, which are
composed of rectangles, is equal to the sum of the torsional rigidities of prisms whose sections are
the component rectangles, corrected by a simple additive term to take account of the increased
stitlness resulting from the junctions of the rectangles.

The formilas developed by C. Weber for such sections were found to be fairly accurate when
tthewidths of the component rectangles are extremely small in comparison with their lengths, as-
with many rolled-steel sections. (Reference 11.) For sections of wooden beams for which the
component rectangles are wider (say the width great~r than cme-fifth the length), Weber’s
formulas give torsional rigidities that are much too low. His formulas always assume the
presence of flets, the radii of which are equal to the width of the narrowa component rectangle.
With thicker sections, such as those that we have tested, the variation of the torsional rigidity
with the radti of the illets can not be neglected. In our opinion, the reasoning employed by
Weber in deriving his formulas is open to objections. The errora introduced, however, are
negligible for very thin sections.

GrifEth and Taylor developed rules for calculating the totional rigidities of prisms of any
section. The application of these rules to sections of the kind that we are considering is rather an
intricate process as compared with the simple computation required by our proposed formula.
The results obtained by Griflith and Taylor’s rules are good for fairly compact sections. For
sections made up of component recta.ngles, the results calculated by their rules appear to be
somewhat too high.

Our tests show that the totional stiffness of a beam may be materkilly increased by the
way in which it is fastened at the ends. Two other factors are important in connection with the
torsion~ behavior of wooden beams. They are rate of fiber strain and moisture content.
Corrections for their influence on torsional properties were determined. We have concluded
that a third factor, which has to do with the dtierence betwmn the moduli of rigidity of wood
referred to planes radial and tangential to the UU~ figs, may, ~ general, be neglected iII
design and a mean modulus used. For Sitka spruce this mean modulus is between one-fifteenth
and one-skteenth of Young’s modulus paralIel to the grain.

suMMnY

This report rewiews briefly the fundamental theory of torsion and shows how the more
common torsion formulas have been developed from that theory. Formulas for solid and
tubular sections that have yielded to mathematical treatment are given, and empirical formulas
are developed for irregular sections whose component parts are rectangles. The e.mpirical
formulas are a result both of direct torsion tests of wooden specimens and of the application of
the soap-film method of imrestigation to the sections in question. The mathematical analogy
upon which the soap-film method is based is eqdained.

The eilect of a lack of isotropy in wood, caused by the presence of the annual growth ringa,
is discussed and is shown to b.erelatively unimportant.
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APPENDIX A

PRISMS OF NONISOTROPIC MATERIAL

In order to sol-m the torsion problem for a wooden beam, we shall consider a prism of non-
isotropic material in which there are three mutuaUy perpendicular planes of elastic symmetry,
one of which is perpendicular to the direction of length of the prism. It -willbe shown that the
solution of the torsion problem for such a prism can be reduced to the solution of the same
problem for an isotropic prism whose section is obtained by transforming the boundaries of the
original section through a iinear transformation and whose modulus of rigidity is expressed in

--

terms of the moduli of the original materhd.
Let the asis of Z Iie tdong the direction of the length of the prism and the axes of X and Y

be axes to which the boundary of the section is conveniently referred. (l?ig. 12.) Let the
planes 2X’ and ZY’ be the longitudinal planes of elastic symmetry and let C?land G, be the

--—
..—

Y
..

Y

x

Eracfm 12

moduli of rigidity associated with shearing strains corresponding to the pairs of directions of
the axes of Z and X’ and of Z and Y’, respectively.

We form the same general picture of the state of stress and strain as for the isotiopic prism
(p. 10) and accordingly we again assume that the components of the displacement parallel

———

to the X’, Y’, and Z axes, respectively, are expressed as folIows:
.—

where r is the angle of twist per unit length and @ is a function of x’ and y’ only, which is to
be determined.

.—

As a consequence of the type of displacement given by (l), all of the components of strain
vanish except

*+%=<%+”)’‘Y’’=ay

-+~=(%-~)”

,_au aw

“* – a2 aX

(2)

.-

(Reference 1.) These are shearing strains corresponding to the pair of directions W’ and ZX’,
respectively. Then all stress components vanish except the components X’t and Y’. of shearing
stress and these are given by

X’, = (7IezW, Y’. = Gae.,.. (3)
707
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(Reference 2.) Referred to the axes X and Y, which make an’
, ~,’ the stress-components are

X,=GZ eti, Sk ct-Gl e,ti cos a,

Y,= GSegs cos a– GI e.=, sin a.

Entering the values of e,?, and e,ti from (2), noting that

angle a with the axes X’ and

(4)

X1=X Cos a—y sina, y’=x sina-l-y C09 a,

and using the abbreviations 2~=~~~ cY+Gl CO~%%

h= (GS–G1) sin a cos a, (5)

p = GSCOE?a+ G1sirf a,

we find that equations (4) become -—

(6)

From the equations of equilibrium and equations (6), we obtain the diilerential equation which
the unknown function 4 must satisfy; namely,

(7)

This equation for the determination of @ ccwrespoq@ to equation (3), page 11, for an iso-
tropic prism.

The requirement that the lateral surface of the prism shall be free from traction leads to
the following condition, which @ must satisfy on the curve ~ (cc,
cross section:

( )( )-
K$+h”g g+ @+p* @

ax. ay av

aj
=(Ky-kc) g+(xy–w) ~“

After the change of @dependant variables .—

where

the differential equation (7) becomes
~++a’~” -
ap @=o-

If the equation of the boundaryf (z, y)= Ois transformed into

y)= O, the boundary of the

(8)

(9)
-.

(10) ‘-

(11)

l’(g, q)=o (12)

by the change of variables (9) the boundary condition on o in equation (8) becomes
—

(
~ a+ aF+ ao a

?
——— —
a.g3C aq aq % a~‘7 a~ (13)
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If we let \
d’= 64, (14)

this condition reduces further to

where v denotes the normal to the new boundary.
From (12) and (14)

df~! &~t
~+-@=o. (17)

The solution of (17) subject to the boundary condition (16) corresponds to the solution of the.
torsion problem for a prism whose section has the new boundary (12) and which is composed of
isotropic material.

It will now be shown that the torsional rigidity of the original prism can be expressed in
terms of the torsional rigidity of the transformed prism. For the couple T we have

Entering for X= and Y= their expressions in terms of@ (equation 6) and changing the variables
of integration to &and ~ by equations (9) we obtain

(18)

where the integration is no-wextended over the area of the transformed cross section. It follows
at once from equations (18) snd (10) that the torsional rigidity C of the original prism is given by

(19)

The right-hand member of this equation is the torsional rigidity of an isotropic prism whose
cross section is obtained from that of the original prism by the transformation (9) and whose
moduhs of riggdity is

LINES OF SHE~RING

(20)
g_ K _ (G, sin‘cY+G, COS‘a)’

a -@m “
STRESS AND INTENSITY OF SHEARING STRESS IN A NONISOTROPIC

PRISM

Let W be a function associated with the transformed
with such a prism in equation (10), page 12, that is, let

where $’ is a function conjugate to +’. It folIows that

~ = ~xE’,a a?l

..—

.-.
--

—

——
—.—

.—

isotropic prism as the function Q was
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If we now express these components in terms of the variables x and y, using equations (9),
and let

W (g, ;) =W (h, y–w) =W (z, y),
we obtain simply

X,= TK~? yg=-TK~m (21)

It follows that the curves, IP(z,y)= conshnt, are lines-of shearing stress and that the intensity
of the shearing stress at any point is equal to .—

f31P
.—

‘Kz’
(22)-” “’

v denoting the normal at the point in qu@on to the curve V(X,y) = constant, which passes
through that point.

Applications to certain nonisotropic prisms tith simple cross sections,
To take a typical example, let us suppose that the material is wood. It.wi.11 be assumed that

the plane X’OZ, Figure 12, is parallel to the annual rings which are considered to lie in planes.
The moduli G, and Gz (equations (3)) are sometiraes called the tangential and the radial moduli,
respectively.

(a) THE @tCLE:

Let the axes OX’. and OX coincide so that a= O. After the transformation (9) the circle
becomes an ellipse with the semi-axes —.-——-

,7

On letting a= Oin equation (2o) the modulus of rigidity of the transformed elliptic section is
found to be

The torsional rigidity of the original circular cylinder is equal to that of the transformed ieotropi c
elliptic cylinder. We find (p. 15).

G,G, ~,
c=r~ . (23)

On comparing this result (equation (23) ) with that on page 21, we see that the torsional .
rigidity of the given nonisotropic circular cylinder witli moduli GIand Gsis equal to the torsional
rigidity of an equal isotropic circular cylinder with the modulus,

It has sometimes been erroneously assumed that this quantity is the mean modulus for a section
of any shape,

(b) THE ELLIPSE:
.

-,

The annual rings make an angle a with the X-axis.
.-

The section of the transformed cylinder
is obtained by using equations (9). The transformed. section is an ellipse whose axis can be
found. Enteiing these axes and the modulus as given by (20) in the expression for the torque
of an elliptic cylinder, page 15, we find as the torsional rigidity of the transformed section and
consequently that of the original section

(24)
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where m=; and ~ and ~ are given by equation (5). If

;=2. and G1=0.9G2,

we obtain

0=
7.2Tb4GZ

4.6 ~~- ~+4.9 co~k~“

Denote by 00 and OW,respectively, the vahes of C when a= 0° and 90°,respectively. Then

~= 1.065

and if
a C?so
&=3, -q=l.087.

If G,= 0.8G,, we find that

(7.
and ~=1.195 when ~=3.

The torsional rigidity of an elliptic cylinder in which the annual rings are perpendicular to the
major axis is greater than that of an equal cyIiider of the same material with the rings parallel
to the major axis.

(c) Tlam RECTANGLE:
Let a, the angle between the annual rings and the X-a.xia, equal zero.
The equations of transformation (9) become

7 -y.

The rectangle with sides 2a and 25 is transformed into another rectangle with sides

The modulus of rigidity of the transformed isotropic rectangular prism is, in accordance with (20)

Then by the formula on page 15 the torsional rigidity of the transformed section is

in which h is to be taken from Table I by replacing the ratio of the sides by

(25)

This result is in direct agreement with that of St. Yenant, who obtained formulas for the cases
in which a=OO and a= 90°.

--—
-.

.—

.

.-

.

—

u.-

—.
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If cc= 90°, we find that the re@mgle is transformed into a rectangle with sides

and that the modulus of rigidity of the transformed isotropic prism is

Entering these results in the formula for an isotropic rectangular prism on page 16, we
again obtain St. Venant’s result for. this case,

If GI= 0.8QSthe torsional rigidity of a quarter+awn board whose sides are in the ratio 3 to
1 is 18 per cent greater than that of a plain-sawn board of the same dimensions.

Y

B
B . A

A’

o
x

c’

c D
.5

FIGURE 13 -““

In general, the rectangle with sides..% md 2h .md vertices ABCD” is transformed into a ..;.
parallelogram A’B’ C’D’ whose vertices de at the points

(8a, fi–ya), (–&z, b+7cz), (- ~a,–6 + ya), and (M,- b–~a) respectively. .

(Fig. 13.) The sides are
A’B’ = 2a~~ and

The modulus of rigidity of the prism of transformed section is given by equation (20). The
acute angle between adjscent sides of the parallelogram is found from the equation, —.

tan 8=$ --
L.

The torsional ri@dity of the transformed isotropic prism whose section is a ptu-allelogramis
calculated by the approximate formula

A4

—uC=41J

where A is the area of the section and J is its polar moment of inertia. This formula is quite
accurate at the extremes a= 0° and a= 90° if the ratio of the sides is 3 to 1. The use of this
approximate formula to compute the torsional rigidity of the transformed prisms appears to be
justiiled, since the anglesof the parallelogramsinto which the rectangular sections are transformed .
differ but little from right angles. If the ratio of the sides of therectWgle is d.iflerentfrom 3 to 1
the factor 41 in the denominator should be replaced by a dilYerentnumber so chosen that the
formula gives rewdts that agree well with the exact values for a= 0° and a= 90°.

,“
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(d) THE EQUILATERAL TRIANGLE:
By the transformation (9) the equilateral triangle (&. 14) with vertices A, B, and C at

Y
B

L AX
c

FIGUEX14
the points

and (O, O)

is transformed into a triangle with vertic~ at —-

[
(~a,–w), ~, (w–~)~]~and (o, o), .

respectively. Table WI gives the lengths of the new sides (l’B’ and C’A’ and their included
angle 0’ =Af C’B’ corresponding to various values of the angle a, a being the angle made by the

...—

planes of the annual rings with the X-axis, for wood. It was assumed that
.—
.-

Gj= OJw.a ‘

TABLE WI
--- -,-—.

a j a [ -t I ModuIus I C’B’/(z \ C’A’/a I c’ I C/K - -. .._-
..-..

<- ---1
0. 716(7*
. 71OG
.7346$

:%%
. 906~

L 031
L 016
L 000
.984
.970
.950

L 118

1

:; ;3
L 116
L 103 59 62
L 080 61 21
L 056 t33 ~
L 001

I

0.1928

: :;:7
.1924
.1924
.1918

1 L 118 0
L 115 .032
L 101 .062
L 077
L 052 : %
. 994 .111

-=
.

..-. ..—
_ L-- —

45
1 1 a I 1 , ,

The torsional rigidity C used in the last column of Table VII was computed by the formula

(27)

where A, J and ~ have the same meaning as on page 42. This formula, which is exact for
the equilateral triangle, was thought to be sui%ciently accurate for the computation of the
rigidity of the slightiy distorted transformed sections. According to the computed VaIUeS
the torsional rigidity does not vary appreciably with the angle a made by a plane of symmetry

(the plane of the annual ring%, for viood) with one of the bases. This result is not surprising in
view of the symmetry of the section.

--

.—

THE SOAP-FILM METHOD OF SOLVING THE TORSION PROBLEM FOR PRISMS OF NONISO-
TROPIC MATERIAL

—-----

The torsion problem for a prism of nonisotropic material having perpendicular longitudinal
planes of elastic symmetry has been reduced by the linear transformation (9) to the torsion
problem for an isotropic prism of a transformed section and a given modulus of elasticity. The
soap-film method may accordingly be used when the transformed section is such that a rigorous
mathematical solution of the torsion problem for this section is not available.

10439i4~

——

—
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Ii follows from (19) in the way in which (15), page 12, was obtained from (6), page 11,
that the torsional rigidity of the original prism, which is the s~me as that of the transformed

--

prism, is given by

C=? J ~ W d~ dq. (28)

This means that the torsional rigidity of the prism is proportional to the volume inclosed by
the surface z-W (:, ~) and the plane z= O, the function W (g, ~) vanishing on the boundary of
the transformed section. Now W (t, q) is proportional to the ordinates -of a soap film stretched
over an opening of the shape of the transformed section of the prism, the film being under a
uniform excess pressure on one side.. The proportionality factor can be determined from (28)
and the previous discussion of the soap-iilm method.

The contour lines of the soap film stretchad over the transformed section are the curves
II? ($,q) =constant. These curves when trmsformed by (9) become the curves V (z, y)= constant,
the lines of shearing stress of the original nonisotro~ic prism. This follows immediately from
equations (21). From the distance between adjacent curves w (x, y)= constant, we can, in
accordance with (22),estimate the intensity of the shearing strew at a given point.

REFERENCES

Reference 1, Love: Theory of Elasticity. art, 10.
Reference 2. Love: Op. cit.; art. 62, 6quation (9); art, 105; and art. 110, equation (15).



APPENDIX B -.

THE GRIFFITH AND TAYLOR FORMULAS FOR TORQUE AND STRESS

Method of oaloulating torsional rigidity.
The method of Griilith and Taylor,

is summarized in this appenti~. For a
body of the report.

We may tite for any section

which gives fairly accurate results for many sections,
comparison with our redts see the discussion in the

.—

T=GK$ -

in which
T= the twisting moment.

G= the modulus of rigidity.

K= the torsion constant.

f= the unit angle of

For a circle

K=<Y

which may be wz-itten

in which A. = the area. In general, then, let us assume

twist.

that

-.

in which U is called the equivalent torsional radius of the section. To determine the twist
for a given moment, we must then find C for the section in question. Checking C for an equi-
lateral triangle against C for its inscribed circle, we iind that, while the area for the triangle is 65
per cent greater, C is only 10 per cent greater; this shows that projecting corners add but little

.-—

to torsional stiffness. The iirst step, then, in getting the correct C for the section under con-
sideration is to round off any projecting cornem with an arc of suitable radius. The radius of
such an arc depends upon the angle through which the tangent to the boundary turna in passing
around such a corner, and also upon the radius of the largest circle that can be drawn in the sec-
tion toucling the boundary at more than two points.

.. —-
Let a be the angIe through which the

tangent passes in turning a corner; for the corner of a square it is 90 degrees, for the apex
.. .——

of an equilateral triangle it is 120 degrees, and so on.
—,.-—

Let b equal the radius of the l@est
circle that can be drawn in the section and call r the radius of the arc for rounding off the corner.
Table VIII gives the ratio of r to b.
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TABLE VIII
T
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In this way we make a new iigure-with all the outwmd corners rounded off. .—. . .=,
Let

Al= the area of the new “figure.
.— ..

PI= the perimeter of the new figure.
Then our first approximation of 0 is

(?,=%*

Our second approximation is obtained as follows: .
Let

.

A = the area of the original section.
P= the Derimeterof the orkinal section.
b= the ~adius of

2A
u—.

P

Then the square of 01 as obtained by the
taken from Table IX.

the larges~inscribed circle.

first approximation must be multiplied by a factor A

TABLE IX

b
/: ~ : ---”’’ ”--”

K
A

h“
A; ,.

,. . >.— .’. .

1.00 1.000 0.70” 0.897 “
, 848

:E “:::: : % .793 ,
984 .56 ,782 ;

::: :966 .60

2 I
.75 .938 ----,z- ---::::---: ;, , :

,“

We have then

.—— A. .—,

. ... . .. .-
.. 1“ . -%+: *::

.:.<..
..-: .—-,

Sections in which more than one circle touching the boundary in three points can be drawn
require special treatment. They must be divided into component sections. A value of C for
each component ia then calculated and the results added to obtain .a C for the whole section.
In dividing a section into component parts, the following rule is usad: Imagine a circle of vary-
ing radius to tiove inside the section. There may be several positions where the circle and
the boundary have three or more points of contact, and between each pair of such positions there
will be a position of. the circle where its radius is a minimum. Draw the ditiion lines through
the poin@ of contact of these minimum circles. when the section includes long, narrow portions “
bounded by lines parallel or nearly so, such as the web of an I beam, the division lines should -

.—
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be .drawmat a distance from the commencement of the parallel portion equal to half its tAick-
ness. (For further details see Figure 15 and the maculation it accompanies.) Slightly tapering
flanges of I beams should also be treated in this way. When such divisions have been made the
preceding method is appIied to each part separately, and the results axe added. Two im-
portant instructions must be remembered, however: In the perimeter oj each component part do
not in-dude -& dimkion lines, and do not round cornersformed by tfie@notion of a division line and
a line oj the original bunilury.

As an illustration of the method, the calculation of the torsion constant for I beam No. 7 of
Table IV, page 30, follows:

The first step is to divide the section into seven component parts as shown in Figure 15.
The division lines are placed by moving haIf the thickness away from the commencement of

FIGUEX 15.-&effon of test speefmen I-i show-

ing component dmple sections

parallel portions. The next step is to round off the corners. The tangent turns through 90

degrees at all corners. Therefore, in accordance with Table VIII ~ is equal to one-half. Table

X gives the remainder of the calculations. All cakulationa were made with a 20-inch slide rule.

TABLE X

I I I 1 b I I

Y:’’?:-r!-l’:’-‘Ft;i“:-r”C, D, E,F-----–--------------------------------------------------
l,IJ,K,L------------------------1---------------------------------A--
: :;, :::::::--::---iii.--i-ii-[--i66_----iiG----:Ei -.--6-.7-__-.GE_.

‘Ot’z--F77i-------i--------i-------i-

200 ]0.625 I

1
---------------
L 633 .3715

------- --------
.------ -------

-mli--l--:iil--l

0.0814
.0814
.0192
.0192
.0192
.0192
. 0817

------- -------- . 3213

—

.-—

-.-_—

...- .... ~...-.a-

_ --+ --
-–~

.,. . J

.. .-. =
.=

.—-

. ..—.—- ‘-:, ---..J-
:::.-_&

—
--
..—

—

.—

. .-

--

.. ..

-. ...-

.- -- —
-

.-

---



718 ““ REPORT NATIONAL ADVISORY C!OhiMITl!EEFOR AERONAUTICS

?dethod of calculating stress,
Two formulas me given for calculating maximum str%s. For compound sections, the

formulas may be applied to each component part separately. Where there are no reentrant–- ““ ‘“ “—
anghs, the following formula is used:

‘=~,[’+”’’(%%1 .’.
A

in which ~ is the unit angle of twist ~ and p is the radius of curvature of the boundary at the

point in question. The maximum stress w-ill usually occur at one of the points of contact
of the largest inscribed circle. An exception may occur if the boundary iE more concave at
some other part than at these points of contact.

Wh6n the twRting moment is known and the rmgleof twist is not, T may
course, from—

T= K&.

Where the bomdary is concave, the followhg for~ula is recommended:

q=~[’+[’:’’loge(’,-:)-”’’’:ltanh:l.

be obtained, of

in which a is the angle turned through by the tangent in turning Rround the reentrant portion.
It must be rmnembered that for reentrant angles a is negatiw.

..



APPENDIX C

DESIGN VALUES FOR AIRPLANE MATERIAL

Recommended design values for wood for use in connection with the formulas of this
report are given herewith. For metal, the allowable shearing stress values at present specified
should be used for q except where better data are now available (as in Technical Note Number
189 of the National Advisory Committee for Aeronautics). For steels for which values are

—

not now avaiIable, 10,000 pounds per square inch added to haIf the ul{imate t@e strength
gives a value that may be used for the ultimate shearing stress in torsion, The vahes for

-—--.— --—
. .----

wood fO~O~.
E 1,300,000

Spruce, G=~= 15.5 =84,000 pounds per square inch..
Spruce, 45° ply-wood, (71=5G=420,000 pounds per square inch.
Spruce, q= 1,000 pounds per square inch.
Spruce, 45° plywood, g= 2,370 pounds per square inch.

.
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